Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.05.583547

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 viruses has had a persistent and significant impact on global public health for four years. Recently, there has been a resurgence of seasonal influenza transmission worldwide. The co-circulation of SARS-CoV-2 and seasonal influenza viruses results in a dual burden on communities. Additionally, the pandemic potential of zoonotic influenza viruses, such as avian Influenza A/H5N1 and A/H7N9, remains a concern. Therefore, a combined vaccine against all these respiratory diseases is in urgent need. mRNA vaccines, with their superior efficacy, speed in development, flexibility, and cost-effectiveness, offer a promising solution for such infectious diseases and potential future pandemics. In this study, we present FLUCOV-10, a novel 10-valent mRNA vaccine created from our proven platform. This vaccine encodes hemagglutinin (HA) proteins from four seasonal influenza viruses and two avian influenza viruses with pandemic potential, as well as spike proteins from four SARS-CoV-2 variants. A two-dose immunization with the FLUCOV-10 elicited robust immune responses in mice, producing IgG antibodies, neutralizing antibodies, and antigen-specific cellular immune responses against all the vaccine-matched viruses of influenza and SARS-CoV-2. Remarkably, the FLUCOV-10 immunization provided complete protection in mouse models against both homologous and heterologous strains of influenza and SARS-CoV-2. These results highlight the potential of FLUCOV-10 as an effective vaccine candidate for the prevention of influenza and COVID-19.


Subject(s)
COVID-19 , Communicable Diseases
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.09.531862

ABSTRACT

SARS-CoV-2 has demonstrated extraordinary ability to evade antibody immunity by antigenic drift. Small molecule drugs may provide effective therapy while being part of a solution to circumvent SARS-CoV-2 immune escape. In this study we report an alpha-ketoamide based peptidomimetic inhibitor of SARS-CoV-2 main protease (Mpro), RAY1216. Enzyme inhibition kinetic analysis established that RAY1216 is a slow-tight inhibitor with a Ki of 8.6 nM; RAY1216 has a drug-target residence time of 104 min compared to 9 min of PF-07321332 (nirmatrelvir), the antiviral component in Paxlovid, suggesting that RAY1216 is approximately 12 times slower to dissociate from the protease-inhibitor complex compared to PF-07321332. Crystal structure of SARS-CoV-2 Mpro:RAY1216 complex demonstrates that RAY1216 is covalently attached to the catalytic Cys145 through the alpha-ketoamide warhead; more extensive interactions are identified between bound RAY1216 and Mpro active site compared to PF-07321332, consistent with a more stable acyl-enzyme inhibition complex for RAY1216. In cell culture and human ACE2 transgenic mouse models, RAY1216 demonstrates comparable antiviral activities towards different SARS-CoV-2 virus variants compared to PF-07321332. Improvement in pharmacokinetics has been observed for RAY1216 over PF-07321332 in various animal models, which may allow RAY1216 to be used without ritonavir. RAY1216 is currently undergoing phase III clinical trials (https://clinicaltrials.gov/ct2/show/NCT05620160) to test real-world therapeutic efficacy against COVID-19.


Subject(s)
COVID-19
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-475577.v1

ABSTRACT

Background: Respiratory tract infections (RTIs) is the highest prevalent disease and southern china has a wide spectrum of respiratory pathogen. The aim of this work was to renew the epidemiology characteristics of respiratory pathogens found in children and adults with RTIs from 2018 to 2020 in southern China. Methods: In this work, a total of 134,552 nasopharyngeal or throat swabs (patients from 407 hospitals) were analyzed, and fourteen respiratory viruses (Influenza A virus, influenza B virus, parainfluenza viruses, respiratory syncytial virus, adenovirus, human rhinovirus, human metapneumovirus, human Coronavirus, human bocavirus, enterovirus, cytomegalovirus, herpes simplex virus, mycoplasma pneumoniae and chlamydia pneumoniae) were detected using PCR/RT-PCR. Result: The most common respiratory pathogens in southern china were ADV (16.19%), RSV (15.48%), RHV (11.51%), IAV (10.93%), MP (8.95%), EBV (8.70%), PIV (7.67%), IBV (5.44%), with IAV and ADV as the most prevalent pathogens in adults (11.68%) and children (17.10%) respectively. In detail, ADV (16.30%) and RSV (18.93%) are most common in 0-4 years old, with IAV (16.68%), ADV (20.36%) in 5-14 years old, with EBV (7.48%, 8.74%), IAV (15.43, 9.76%) in 15-49y, 50-64y and IAV (7.37%), IBV (2.43%) in 65-105y. Over three years witnessed an increase in PDR of PIV in 0-4y, 5-14y and 65-105y, and RHV in 5-14y and 15-49y. In month distribution, the positive detection rate of pathogens in adults were generally lower than that in children except for EBV and majority of pathogens has shown a sharp decline in 2020. In Upper RTIs, 77.27% (17/ 22) of co-infected patients had infection to ADV, with poly-infection to ADV and RHV the highest (8/22). In Lower RTIs, the ADV infected patients showed that its co-infection rate to MP, PIV, RHV or RSV were 19.51% (48/246), 15.45% (38/246), 14.63% (36/246) and 14.63% (36/246) respectively. Only IAV, IBV and EBV were detected in co-infection patients with lower RTIs. Conclusion: IAV and ADV were the most important respiratory pathogen in adults and children respectively in southern Chin and cross-reactivity might exist between ADV, RHV, PIV and MP. These should be taken into consideration when they formulate the strategies for co-infection avoidance in patients.

7.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3739805

ABSTRACT

Background: The current pandemic of COVID-19 is posing a major challenge to public health on a global scale. While it is generally believed severe COVID-19 results from over-expression of inflammatory mediators (i.e. a “cytokine storm”), it is still unclear whether and how co-infecting pathogens contribute to disease pathogenesis. To address this, we followed the entire course of disease in severe COVID-19 cases to reveal the presence and abundance of all potential pathogens present - the total “infectome” - and how they interact with the host immune system in the context of severe COVID-19 disease.Methods: We considered one severe and three critical cases of COVID-19, as well as a set of healthy controls, with longitudinal samples (throat swab, whole blood and serum) taken in each case. Total RNA sequencing (meta-transcriptomics) was performed to simultaneously reveal pathogen diversity and abundance, as well as host immune responses, within each sample. A Bio-Plex method was used to measure serum cytokine and chemokine levels.Findings: Eight pathogens were identified in these COVID-19 patients - Aspergillus fumigatus, Mycoplasma orale, Myroides odorantus, Acinetobacter baumannii, Candida tropicalis, herpes simplex virus and human cytomegalovirus - that appeared at different stages of disease course. Notably, the dynamics of inflammatory mediators in the serum as well as respiratory tract were better associated with the dynamics of the infectome as a whole rather than SARS-CoV-2 alone. Correlation analysis revealed that pulmonary injury was directly associated with cytokine levels, which in turn was associated with the proliferation of SARS-CoV-2 and the co-infecting pathogens.Interpretation: The cytokine storm that resulted in aggravated acute lung injury and death involved the highly complex and dynamic entire infectome of each patient, of which SARS-CoV-2 was a component. These results call for a precision-medicine approach to investigating both the infection and the host response on a daily basis as a standard means of infectious disease characterization.Funding: Guangzhou Institute of Respiratory Health Open Project (Funds provided by China Evergrande Group) - Project No. (2020GIRHHMS01), Guangdong Province “Pearl River Talent Plan” Innovation and Entrepreneurship Team Project (2019ZT08Y464), Macao Science and Technology Development Fund (0042/2020/A), Science research project of the Guangdong Province (2019B030316028), Special Project for Scientific and Technological Development and Emergency Response in COVID-19 Prevention and Control of Guangdong Province (2020A111129028), Special Project for Research and Promotion of Prevention and Control Techniques of COVID-19 and Emergency Response in Dongguan City (202071715001114), Jack Ma Foundation (2020-CMKYGG-02), Guangzhou Medical University High-level University Clinical Research and Cultivation Program ([2017] 159 and 160) and ARC Australian Laureate Fellowship (FL170100022).Declaration of Interests: We declare no competing interests.Ethics Approval Statement: The ethics committee of the FAHGMU (Ethics No. 2020-85) and Dongguan’s People’s Hospital (KYKT2020-005-A1) approved the sampling procedure and the use of patient samples for this study. Informed consent was obtained from each patient.


Subject(s)
COVID-19 , AIDS-Related Complex , Communicable Diseases , Acute Lung Injury
8.
Pharmacol Res ; 156: 104761, 2020 06.
Article in English | MEDLINE | ID: covidwho-830796

ABSTRACT

PURPOSE: Lianhuaqingwen (LH) as traditional Chinese medicine (TCM) formula has been used to treat influenza and exerted broad-spectrum antiviral effects on a series of influenza viruses and immune regulatory effects Ding et al. (2017). The goal of this study is to demonstrate the antiviral activity of LH against the novel SARS-CoV-2 virus and its potential effect in regulating host immune response. METHODS: The antiviral activity of LH against SARS-CoV-2 was assessed in Vero E6 cells using CPE and plaque reduction assay. The effect of LH on virion morphology was visualized under transmission electron microscope. Pro-inflammatory cytokine expression levels upon SARS-CoV-2 infection in Huh-7 cells were measured by real-time quantitative PCR assays. RESULTS: LH significantly inhibited SARS-CoV-2 replication in Vero E6 cells and markedly reduced pro-inflammatory cytokines (TNF-α, IL-6, CCL-2/MCP-1 and CXCL-10/IP-10) production at the mRNA levels. Furthermore, LH treatment resulted in abnormal particle morphology of virion in cells. CONCLUSIONS: LH significantly inhibits the SARS-COV-2 replication, affects virus morphology and exerts anti-inflammatory activity in vitro. These findings indicate that LH protects against the virus attack, making its use a novel strategy for controlling the COVID-19 disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Drugs, Chinese Herbal/pharmacology , Animals , Betacoronavirus/ultrastructure , Cell Line , Chlorocebus aethiops , Microscopy, Electrochemical, Scanning , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL